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3.3.5 CAN STOCHASTIC, DISSIPATIVE WAVE FIELDS

BE TREATED AS RANDOM WALK G_ERATORS?

J. Weinst ock

Aer onomy Laboratory

NOAA, Boulder, CO 80303

A suggestion by MEEK et al. (1985) that the gravity wave field be viewed

as stochastic, with significant nonlinearities, is applied to calculate

dif fusivities.

In a talk given in Boulder, REID (personal communication, 1985) described

the mesospheric wave field to be predominantly stochastic in character. In

fact, a recent paper by MEEK et al. (1985) quoted the BRISCOE (1975) descrip-

tion of the ocean wave field as "...an intermittent stochastic process with

significant.., nonlinearities", and suggested that this view should be adopted

in atmospheric studies. Others have noted the random character of the gravity

wave field as well (e.g., Vincent, Balsley).

If the Meek et al. point of view is adopted -- and account is taken that

the gravity wave field is often dissipative -- then one might be able to apply

the stochastic methods of turbulence transport theory to the gravity wave

field. That is, the wave field may be viewed as causing a random walk (of air

parcels) in the manner of turbulence: an irreversible process. However, since

the waves are not as dissipative or random as turbulence, the random walk can

only be an approximation -- an approximation that improves with increasing

dissipation and randomness.

Aside from this uncertainty, there is the obvious difference that the wave

field "eddies" (which we picture as dissipating gravity waves) are strongly

influenced by stratification whereas the neutral turbulence eddies are not.

This difference can be accounted for in expressions of turbulent diffusion by

replacement of turbulent eddies with gravity wave Fourier components. The

question that remains is whether or not such a stochastic wave model is

significant for diffusion in the mesosphere.

The purpose of our article is to calculate the diffusivity for that

stochastic model and compare with previous diffusivity estimates. We do this

for an idealized case in which the wind velocity changes but slowly, and for

which saturation is the principal mechanism by which wave energy is lost. A

related calculation was given in a very brief way (WEINSTOCK, 1976), but the

approximations were not fully justified, nor were the physical pre-suppositions

clearly explained. The observations of MEEK et al. (1985) have clarified the

pre-suppositions for us, and provided a rationalization and improvement of the

approximations employed.

The derivation begins with the diffusivity tensor D of a stochastic,

dissipating velocity field given by TAYLOR (1921) as
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where v'
(x, t') is the velocity fluctuation at point _ at time t', _t is the
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position a particle will be at time t + t' given that the particle was

previously at point x at time t' (the orbit of a particle in the combined

velocity field of me'an flow and waves), the angular brackets denote an average

over time t' and over horizontal spatial coordinates x I and x_, L is the
length scale of the spatial average and T is the time scale the time

average. The time scale T is taken to be much larger than largest gravity wave

period 2H/m(T >> 2H/m), and L is much larger than the largest wavelength under

consideration. Equation (i) also occurs in the theory of Brownian motion.

For a spectrum of gravity waves, the (stochastic) velocity fluctuation can

be represented by

t') = Zk _ exp(ik I_ x + imlt')
_i 1

(2)

v' t+t') = I v exp[ik 2 • x + im2(t + t')]
(xt' k2_2 _t '

where k I is the wave vector of a wave fluctuation, _V_l its amplitude, and

ml its frequency. Note that <(_v')2> = EY. v.*, where the asterisk
_kl_ I

denotes the complex conjugate, and we use _(-_i ) = _i to ensure that (2)

is real.

Substitution of (2) and (I), it is found in a detailed derivation that

D , the vertical diffusivity is given by
ZZ

D _ E- (3)
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where w k is the vertical component of wave velocity v_, and _ is the

frequen'_y of wave _. This equation wa s derived for a_saturated wave field, and

dissipation was required for its derivation.

To generalize (3) to the case of a not completely saturated wave field, it

can be shown that H need be replaced by h ° in (3)

<WkW_*> (4)

DZZ % _Z ykzhom ,

where h is the "dissipation length" of the wave field, i.e., the length over

which t_e wave energy decay e-folds owing to saturation.

Whether or not this "stochastic wave" model of diffusion is useful for the

atmosphere we are not sure. Perhaps it may be useful as an upper bound -- the

more dissipative the waves, the more justified its application. Numerically,

the model gives values of D in conformity with chemical model estimates

(e.g., VINCENT, 1984), but _ether this is more than a coincidence, we do not

know. It is a straightforward way in which to apply the suggestion of Meek

et al. to the problem of diffusivity.
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